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The equilibrium statistical mechanics is investigated of  any system whose 
Lagrangian Lo(v, q) is a convex homogeneous  function of generalized velocities 
v, with coordinates q in a bounded set D. A member  of a canonical ensemble, 
the system has a conjugate Hamil tonian Ho(p, q) that vanishes identically in 
some subset C • D of its phase space. The subset C may also be specified, in 
some systems with a finite function f (p,  q), convex in p ==-cgLo/OV , and then L o 
is also convex and homogeneous  in v. In either case, if C is bounded  and convex, 
then C or the convex function f constitutes the fundamenta l  constraint on the 
system. Under  this fundamenta l  constraint, it is shown that the so-called partition 
function becomes a phase-space volume G (classical) or a number  W of  micro- 
states (quantum) from which follows the thermodynamic  fundamental  relation, 
entropy S-= k In G (or k In W). 

1. I N T R O D U C T I O N  

In the statistical analysis of an equilibrium thermodynamic system, the 
famous prescription by Gibbs is to determine the partition function Q of 
the system, from which follows all the thermodynamically relevant informa- 
tion. That is, we compute 

f 
QN =-- (N! hdN) -' J exp(-flH) dp dq 

QN ~ Trace[exp(-flH)] 

(classical) 

(quantum) 
(1) 

Here, H =  HN(p, q) is the Hamiltonian function (classical) or operator 
(quantum) of the system of N particles in a d-dimensional physical space 
in thermal equilibrium with a heat reservoir of temperature T defined by 
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kT=-[3 -1, and h is Planck's constant (Feynman, 1972; Kittel, 1958). The 
generalized momentum of  each particle is p~ ~ R d, i = 1, 2 , . . . ,  N ;  and 
the generalized position q~ of each particle is confined t o  A c R  d, 
called the "box"  of  physical volume V, so that p --- (Pl,  P2 . . . .  , PNd) C R TM 

and q=(ql,q2,...,qNd)EANcR TM. I n  the limit N~oo, V ~ , N / V  
finite, we obtain from QN the free energy F--- F(~, V, N) =- kT In QN and 
the internal energy U = -0/0/3 In QN. From F we obtain the entropy S = 
S( U, V, N)  either from the thermodynamic relation S = ( U -  F) /T  or 
equivalently from S = - k j p l n p ,  with p=-exp(-[3H)/Q, or from the 
Legendre transform, 

F(fl, V, N)~-~S(U, V, N )~ f l  O~ P - F ,  F=-flF (2) 

in which P is the Massieu function of  S, each method involving the 
knowledge of Q (or equivalently of F).  

In the postulatory formulation of thermodynamics, which Wightman 
(1979) has appropriately called neo-Gibbsian thermodynamics, perhaps 
best exemplified by Callen (1960), S(U, V, N) is considered as the funda- 
mental relation. That is, although Q gives F and therefore indirectly 
S, F(fl, V, N) is a derived thermodynamic potential. The question therefore 
arises: how do we obtain the fundamental relation S = S( U, V, N)  of  ther- 
modynamics directly from statistical mechanics of an open system (open 
with respect to energy or some other important attribute) given that statistical 
mechanics is the foundation of thermodynamics? 

A second important question also arises: suppose we are satisfied with 
the indirect route of obtaining S from F = - k T  In Q, what is the nature of  
Q if the system has a homogeneous first-degree Lagrangian L--- L(t), q) in 
t ) - -v;  i.e., 

L(Av, q) = AL(v, q), A E R+ (3) 

where v = t) = dq/dt, the generalized velocity v ~ R TM of  the particles? For 
we know that by Euler's theorem, the Hamiltonian H(p, q) = v OL/Ov - L 
is identically zero. [Note that in many cases L is the given, from which we 
obtain H, to be used in equation (1), and equation (1) seems to suggest 
that if H = 0, then Q is infinite.] 

In this paper we answer the second question first, and then use this to 
answer the first question, in cases that the Lagrangian is convex in velocity 
v. Of course, as noted, there is a third question: since, if H = 0, then Q = ~ ,  
unless the domain of H is bounded,  how do we obtain the thermodynamics 
of a system whose Hamiltonian has a bounded domain? We answer this 
question in cases of bounded,  closed convex sets in momentum space. The 
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implications of  the answers to the three questions are discussed in the last 
section o f  this paper. 

2. PRELIMINARIES.  CONVEX ANALYSIS 

A function f :  R" --> ~ is said to be convex (Rockafellar, 1970, especially 
Section 13), if for 0 -  < 0 -  < 1, x, y in the domain o f f ,  

dom f -  {x e R": ]f(x)l < oc} 

it is the case that 

f (  Ox +(1 - O)y)-< Of(x)+(1 - O)f(y) (4) 

holds. Any set D c • "  is convex if Ox+(1-O)ycD for any x, y6D. We 
denote the closure of D by /3 or C the interior of D by int(D),  and the 
boundary of D by OD. Also, f (x)  is strictly convex if for 0 < 0 < 1, strict 
inequality obtains in (4). 

The convex conjugate o f f ( x )  is defined by 

f*(x*) = s u p { ( x l x * ) - f ( x ) ,  x 6 R"} (5) 

where x*~ dual space of R" (i.e., R") and the scalar product of x and x* 
is defined by 

n 

(xlx*) = E xix* ~ xix* (6) 
i - - 1  

(where repeated index denotes summation) and x* is given by the require- 
ment that 

f ( y ) - f ( x ) > - ( y - x l x  *) all y~N'~ (7) 

Consider a differentiable function g: R " ~  R. Its Legendre transform 
g*(x*) is given by 

g*(x*) =- ( x l x * ) -  g(x) (8) 

x7 =- og(x)/ox,,  i = 1, 2 , . . . ,  n 

Rockafellar (1967) shows that if g(x) is additionally strictly convex, then 
its Legendre transform and its convex conjugate are identical; and the 
transformation also effects a one-to-one mapping of i n t ( d o m g ) ~  
int(dom g*). 

We see that i f f ( x )  is convex, then 

D=-{x: f (x )< y}cR", y e n  (9) 
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is an open convex set. And, as a closed convex set, /5---- C has a support  
function h(x*) ,  

h (x*)  =---- i n f  { f * ( a x * ) /  oz + y /  a} (10) 

which is a homogeneous convex function generated by the convex conjugate 
o f f ( x )  - 3', i.e., b y f * ( x * )  + 3'- The indicator function, a sort of  characteristic 
function, of  C is given by 

6(x lC)=_[O,  x ~  C (11) too , x ~ C  

The domain of h(x*)  is necessarily a cone, since h is homogeneous,  
h(Ax*)  = Ah(x*) ,  h c R+, and exists for all 0 ~ A < ~ .  This cone K is called 
the barrier cone of C, i.e., 

K-= {x*: a l l x e  C, (x]x*) <_ r, r ~ R }  (12) 

where K is a cone, means that for all A e R+, x ~ K ~ Ax e K. It is the case 
that 6 ( x l C )  (with its domain C) and h(x*)  (with its domain K )  are a 
convex conjugate pair. 

With convex conjugate transforms, we are able to handle a non- 
differentiable, strictly convex function f in the manner  of  Legendre trans- 
forms, especially functions with bounded domains,  where by bounded 
domain we mean that 

Ix - yl  2--- ( x  - y lx  - y) <- R 2 < oa 

for all x, y e dora f ;  [Ix I = (x lx  1/2 = (x~xi) ~/2 is the Euclidean norm of  x]. 
By convention, every convex function is deemed to be defined in the 

whole of  ~n, with the understanding that f ( x ) = o o ,  if x ~  d o m f  One can 
show easily that the intersection of a finite collection of convex sets is 
convex (with the empty set Q taken as convex). 

I f  f (x) is homogeneous (of first o rder ) f (Ax)  = Af(x), A r R+, t h e n f ( x )  
is convex if 

f ( x + y ) < - f ( x ) + f ( y ) ,  x , y ~ d o m f  (13) 

[since f ( O x + ( 1 - O ) y ) < - O f ( x ) + ( 1 - O ) f ( y ) = f ( O x ) + f ( ( 1 - O ) y ) ]  and 
strictly convex if strict inequality holds. Given a finite collection of convex 
functions f j ( x ) , j  ~ J, with respective domains Cj, it is the case that 

f ( x )  =- sup{f~(x),j  6 J} (14) 

is convex, with convex domain 

C--- VI G (15) 
jaJ 
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We may define the left scalar multiplication of convex function by 
(Af)(x)  = kf (x) .  But more relevant here is the right scalar multiplication, 
defined L y 

( f k ) ( x ) = A f ( k - ' x ) ,  A>O 
(16) 

(fO)(x) = 6(xlO), f ~  0 

Then the function g(& x) given by 

g(h , x )=- (  ( fh ) (x ) '  A->O (17) 
toe, h < 0 

is a homogeneous convex function on ~,+1. 
Finally, let us emphasize that every homogeneous convex function h(v) 

is the support  function of  some closed convex set C and has a convex 
conjugate, defined by 

h*(p) = sup {(ply)- h(v)} = 6(pie) 
~ E R  n 

(18) 
C -= {p ~ ~": (ply)_< h(v), all v ~ ~n} 

3. SYSTEMS WITH H O M O G E N E O U S  LAGRANGIANS 

Homogeneous  Lagrangians Lo(q, q)=-Lo(v, q) in dynamics arise in 
three ways: 

1. The system's Lagrangian is intrinsically homogeneous,  especially in 
relativistic dynamics, e.g., Lo(v, q)= [Gu(q)~ivj] 1/2. W e  shall refer to this 
type as explicitly homogeneous Lagrangians. Being homogeneous,  such a 
Lagrangian Lo gives rise to a Legendre-transform Hamiltonian Ho(p, q) 
which vanishes identically [by Euler's theorem x~ Of/Oxi- k f=  0 for f ( x )  
which is homogeneous of order k, f ( k x )  = A kf(x), A > 0]. More pertinent to 
our purpose is the fact that, being homogeneous,  if also convex, L0 is the 
support  function of  some closed convex set C given by 

C -= {p: for all v ~ R", pivi <-- Lo(v, q)} 
(19) 

Lo* ---- sup{ p~vi - Lo( v, q ) , v ~ •" } =- 8 ( p [ C ) 

and it is in this set C that the convex conjugate Hamiltonian L* =-/40 
vanishes. In other words, Ho(p, q ) - 8 ( p [ C ) ,  the indicator function of C. 
The domain of Lo(v, q) is K, the barrier cone of  C. In general, C can be 
described in terms of  a set of  convex functions fj(p, q) , j  ~ J, such that if 

f (  p, q) =-- sup{fj(p, q) , j  c J} 

then for some y c R, q ~ D ----- A N, 

C - {p: f (p ,  q) - y} (20) 
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Physically C x D gives the region in phase space allowed the system. The 
existence of C as a nonempty, bounded, convex set [or equivalently, of 
f (p ,  q)] constitutes what we call a fundamental constraint on the system. 

2. The second way is through the consideration of  t as a coordinate 
qo and the transformation of  v~ =- dq~/dt into (dq~/d~-)/(dt/d~') =- v~/Vo, with 
dt /dr  = Vo>0. This transformation converts a given nonhomogeneous 
L(v, q) into a homogeneous 

Lo(v, q) =- voL(v/Vo, q) (21) 

with dora Lo=subset  of  R+• By equation (16) we see that Lo is the 
right scalar multiplication by Vo of L(v, q). In this way, any Lagrangian 
L(v, q) can be made homogeneous. In this case, one easily shows that 
"act ion" I is preserved, 

I =  f L(v,q) dt= f voL(v/vo, q) d'r (22) 

We shall refer to the Lagrangians obtained in this way as the second type 
or implicitly homogeneous Lagrangians. Such a Lagrangian always has at 
least the primary constraint 

Po = OLo/OVo =- - H  = L -  vi OL/Ov~ (23) 

We shall always consider that the given L is convex in v, and therefore 
H(p, q) is convex in p, and Lo is convex and homogeneous on R "+1 and 
defines 

R x C -= {(Po, P): for all (Vo, v), VoPo+ v~p~ <- Lo} 

For physical reasons Vo and Po are usually bounded,  0 < v0 < oo, 0 >  P0 > 
- %  y ~ R + .  Hence, with q c D ~ A  N , 

f (p ,  q) =-- H(p, q) <- Y; C -= {p: H(p, q) <- Y} (24) 

constitute the fundamental constraint on the system. 
3. The third way is by constraining the momenta of the system in some 

special way. For some physical reasons, we may not know the Lagrangian 
or the Hamiltonian, but know that the momenta satisfy 

-oo<f(p,q)<-- T, q e D  (25) 

where f is a constant of  motion (Goldstein, 1950) and, as a supremum of 
some convex functions, is a strictly convex function of  p, with d o m f #  @. 
This inequality (25) describes a closed convex set C, 

C=--{p:f(p,q)<-y}, q ~ D  (26) 
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The specification of f or C is the fundamental constraint on the system. 
The knowledge of  f enables us to obtain the appropriate convex 
homogeneous support function h(v, q) of  C, [generated by f(p,  q)], which 
we may take as the homogeneous Lagrangian Lo(v, q) of the system. The 
corresponding convex conjugate Hamiltonian Ho is the indicator function 
of C, 

Ho(p,q)=-6(pjC), q ~ D  

As shown in the next section, in order to obtain the fundamental 
relation S = S(U, V, N)  one requires the proper fundamental constraint 
(i.e., C, which is nonempty, convex, and bounded),  and this explains the 
terminology. We remark that our fundamental constraint differs from Dirac's 
primary constraint. Although both deal with the fact that the momenta are 
not mutually independent,  the fundamental may be wholly physical, while 
the primary comes from the mathematical requirement that in open sets in 
which Lo is twice-differentiable the Hessian 02Lo/OV~ Ovj is singular. It may 
happen that a set of given constraints redescribed as inequalities by 
6j(P, q)-< yj constitutes a fundamental constraint f(p,  q) = sup 4~j(P, q). In 
particular, a finite collection of primary constraints in the form p~al j~ = 0, j = 
1, 2, 3 , . . . ,  I (Raspini, 1986), modified to read p~a~ j) <- yj, for some al j) r R, 
may provide a fundamental constraint. This follows from the fact that 

H (j)-= {p: p~al j~ - yj = 0}; MS (j)=- {p: p~al j ) -  yj - O} (27) 

as hyperplanes and closed half-spaces, respectively, may give a nonempty, 
bounded,  convex set C defined by 

C ~--("~ MS (j), O C ~ O  H (j) (28) 
(J) (j) 

as the p space allowed the system. 
We remark that while L0(v, q) has the unbounded set K (the barrier 

cone of C) as its domain, the momenta p~ =OLo/OV~ are bounded. This is 
because the derivative of  a homogeneous function (of first order) is a 
homogeneous function of zeroth order, p~(hv) = p~(v), h ~ R+. This behavior 
of pi(v) is also evident from the convexity of Lo: 

Lo(w, q)-Lo(v, q)>-(w - r i p ( v ) ) ,  all w (29) 

So, a fundamental constraint f(p, q) <_ y or C given restricts the allowed 
values of  p or gives a closed domain C x  D allowed to the system, a 
requirement that is eminently physical. In particular, if f(p, q) is in fact 
H(p, q) or C=--{p: H(p, q)<-y}, then the fundamental constraint is a 
restriction on the energy H [not Ho = S(p[C)]  of the system. 



1030 Akin-Ojo 

In this paper  we consider only Lagrangians that are convex in v. This 
is because, in variational calculus, for the problem 

j- L(v, q) dt = 0 

to have a solution, L must be necessarily cor~'ex in v, according to 
(Legendre) 02L/Ov~ Ovj is positive semidefinite, or (Weierstrass) L(w, q ) -  
L(v, q)>-(w-rip(v)) ,  all w (Clarke and Zeiden, 1986; Bolza, 1904), each 
of  which is equivalent to convexity. So, our homogeneous Lagrangians are 
convex and each is therefore the support  function of  some convex set. For 
our purpose,  every convex function is assumed to be nowhere minus infinity. 
Unless any confusion is likely, we often omit to write explicitly the q 
variable, with the understanding that q e D - A N c R Na, i.e., that the parti- 
cles are in a bounded region, called the "box"  in physical space. 

4. T H E R M O D Y N A M I C  FUNDAMENTAL RELATION 

I f  the Lagrangian is homogeneous and therefore the Hamil tonian 
vanishes identically, then the so-called partition function is not defined in 
general. Under  a prescription to be described, the "parti t ion function" 
exists, but with a new interpretation as volume in phase space. This volume 
then furnishes the thermodynamic  fundamental  relation. In this section we 
consider the first two types of  homogeneous Lagrangians and in the next 
section we analyze the third type. 

4.1. Explicitly Homogeneous Lagrangians 

Let 

Lo: R n x A N ~ R  (n=-Nd) (30) 

be homogeneous in v = (Vl, v2, �9 �9 �9 v.) ~ K, a cone in R ". Then Lo is singular 
in the int K, and, with Pi =-- OLo/OVi, p ~ int C, 

Ho(p, q)=- r ip,-  Lo = 0 (31) 

Suppose the matrix Mv(q) =- 02Lo/OV~ Ovj has rank n - l everywhere in D -= 
A N, then there are 1 primary constraints (Raspini, 1986), 

r j = l , E , . . . , l - - J ,  q ~ D  (32) 

each of which is a surface in p space. And 

OC =- {p: ~bj(p, q) = O,j e J} (33) 

is also a surface of zero volume, and therefore, with No--- N !  h Na, 

Q--- N ~  .Ja{ 11 space exp( - f lHo)  dp dq = No ~ 3o[ c• dp dq (34) 
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which is zero. Therefore, the free energy F(fl, V, N)=- - k T  In Q does not 
exist. Since the system is a member  of  a canonical ensemble, the logical 
prescription is to convert the surface OC into a volume by defining 

C = { p :  cbj(p, q)<-O, jcJ ,  q~D} (35) 

provided OC is a closed surface. Then Q is replaced by 

O = No 1 [ dp dq (36) 
d C x D  

This integral G is the volume in phase space occupied by the system under 
the set of  constraints (35). Note that G may be zero if C is empty, or infinite 
if C is not bounded.  I f  C turns out to be a closed, convex, bounded set, 
then the set of  primary constraints, redefined as inequalities, acts like a 
fundamental  constraint. In the thermodynamic limit N-~ oe, the volume V 
of A -~ ce, but N~ V finite, the thermodynamic fundamental  relation of the 
system follows from Boltzmann's prescription for entropy S (Shannon, 
1948, Appendix,  Theorems 3 and 4, Jaynes, 1965): 

S = S(y, V, N) -=-- k In G; G = G(y, V, N) (37) 

where k is Boltzmann constant, and y comes from the constraints. The 
logical interpretation of y is a quantity that is proport ional  to the expectation 
value of some important  attribute or some constant of motion f(p, q), such 
as the internal energy U =-(H(p, q)); (this interpretation will be justified 
in Section 5 and we shall refer to (f(p, q)) as generalized internal energy), 
where f(p, q) describes 

C=---{p:f(p,q)<-y}, q~D 

As a first example,  consider 

Lo(v, q)=- max{ Uvi/ co, i= 1,2, . . . ,  n}, U, c0~R+ (38) 

It is known that this is the support  function of 

C-={p:  pi---0, p l + p 2 +  �9 �9 �9 + p ,  = U/co} (39) 

which is a convex, bounded set. 14o =- 6(plC). Consequently, the so-called 
partition function is really the volume in phase space 

G ~ N ~  f cxDdpdq=N~ f cdp=N~176  (40) 

Then 

1/T=kOS/OU=kOlnG/OU or U = n k T = N d k T  (41) 
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Thus, the system with this L0 behaves like a collection of highly relativistic 
classical particles. 

As a second example consider 

Lo = [gij(q)vivj] 1/2, gijviv~ >-- 0 (42) 

where g is of rank n - / .  Except for slight changes in notation, we may take 
over Raspini's (1986) analysis to show that the primary constraints are 

c~j(p, q) ==- pial j) = O, j = 1, 2 , . . . ,  l 

p~-aLo/av~,a(~)~g~ ", as in equation (32). These constraints describe 
hyperplanes and half-spaces as in equation (27). The intersection of these 
half-spaces is a closed, convex, unbounded set C, so that these primary 
constraints do not constitute a fundamental constraint. Thus, the volume 
in phase space 

G =  Nol  f dpdq=eo  
~• 

in which case the fundamental relation S = k In G and hence the thermody- 
namics do not exist. 

Suppose in the second example that the matrix gu is replaced by the 
Kronecker delta matrix p2 (q )~ ,  and Lo is the multiple of the Euclidean 
norm Ivl plus a linear function, 

Lo =- p( q)( vivi ) l/2 + ( blv) (43) 

where p (q ) c  R+. That is, the v domain of Lo is the closed convex cone, 
which happens to be Rn. It is known that this L0 is the support function of 
the bounded convex set 

C ---- {p: all v, (ply) < - L0} (44) 

which is a hypersphere of radius p(q) centered at b ~ R n, i.e., 

C ={p :  ( p - b [ p - b ) < - p 2 ( q ) } = - B  (45) 

And Ho(p, q)=- 8(plC),  q~ D. Hence, we have 

O = N o '  f exp(-f lHo)  dp d q ~  No '  I dp dq =- G (46) 
Ja ll space dB  x D 

Putting p2(q) = m3' (rn is the particle mass) independent of  q, we have the 
fundamental relation S = S(y, V, N).  In Section 5, we show that 3' is propor- 
tional to the generalized internal energy U, 3' = rU, r e R+. If b = _0 e R n, then 
C is a hypersphere of radius (m3") 1/2 in n-dimensional p space, and 

G = N o  1VN(ru )n /2 ( ' r rm)  ~ / 2 / ( n / 2 ) !  ( 4 7 )  
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from which we obtain the fundamental  relation 

S = S ( U ,  V, N)-= k l n  G - l n k l n  U (48) 

We discuss this particular example further in Section 5, where we can infer 
that given g*(p)  =- g~ y and hence B, the Lo of equation (42) is the 
Lagrangian of the system. 

4.2. Implicitly Humogeneous Lagrangian 

Let L(v, q) (not explicit in t) be a nonhomogeneous,  strictly convex 
Lagrangian with n degrees of  freedom. The energy or Hamiltonian 

H(p,  q) = vi OL/Ovi - L, p ~ R ~, q ~ D (49) 

is strictly convex in p. The momenta  pi =OL/Ov~ are independent or 
equivalently the n-dimensional matrix M~j =-02L/Ov~ Ov~ is nonsingular. If  
we transform L to 

Lo(v, q)=- voL(v/Vo, q) (50) 

with Vo = dt/d';, Po = OLo/OVo, pg = OLo/Ov~, then the (n + 1)-dimensional 
matrix 

Mu=-a2Lo/aV~ Ovj, i , j  = 0, 1 , 2 , . . . ,  n 

is singular, of  rank n, because Lo is homogeneous.  The convex conjugate 
Hamiltonian Ho is given by 

Ho( p, q) = VoPo + rip, - Lo = 0 (51) 

o r  

That is, 

-VoPo = vipi -  Lo = roll(p,  q) 

H(p ,  q)+Po = 0 (52) 

is the single pr imary constraint. We assume Vo> 0 and H(p,  q) is bounded. 
Consequently,  

N x C = - { ( p o , p ) :  for all (Vo, v)elt~+xR",VoPo+Vipi<-Lo} (53) 

is the fundamental  constraint, because C is convex and bounded. The 
convex bounded set 

C x O --- {(p, q): H(p, q) <- y} (54) 

for some y c R+ is the part  of  the phase space allowed the system, and 

Ho(p, q)=~(1~iC;); fi=-(Po,P), C - - - R + x C  (55) 
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is the convex conjugate Hamiltonian of the system. 
consider as the fourth example 

L( v, q)=�89 j 

Akin-Ojo 

As an illustration, 

(56) 

where M is a real, symmetric, n-dimensional matrix, positive-definite 
everywhere in D. We take it that Vo =- dt/d~ is such that 0 < Vo < ~ .  The 
corresponding homogeneous Lagrangian is 

[ 1M~ vivj/ Vo, 0 < Vo < Co 
Lo(v, q ) = ~ O  vi = Vo=0 (57) 

otherwise 

also known as the right scalar multiplication (Lvo)(V) of L by Vo, [see 
equation (16)]. The momentum Po equals - H ( p ,  q) and since Vo is bounded, 
Po is bounded, 0->po -> -3/. Then the fundamental constraint is given by 

C =- {p: 0 < - H(p, q) - 3'} (58) 

Define (M-1)~-= M~; since H(p, q) =- �89 we have 

C --- {p: �89 = -Po <- Y} (59) 

Consequently, 

G = - g o l f  a(H+po) d p o d p d q = f  d p d q g o  1 
C x D  

which can be done by transformation H(p, q)~  Y~ p2/2mi, 

G =- N o  I { dp dq I11 
. I  C •  

where {rn~(q)} are the eigenvalues of M, and IJI is the Jacobian of the 
transformation p -  P and equals one; det M=l-Ii m~(q). Thus, 

G = Nol(23' )n/2/(ln)! m /2(q) dq (6O) 
D " 

If  M U is independent of  q, then 

Go = Nol(2~r3")n/2/�89 VN(det M) 1/2 (61) 

which, with S = k In Go, gives the entropy of an ideal gas in the limit n/2 ~ oe 
and 3' is identified with the generalized internal energy Uo. In this special 
case 1/r~-O(k In G)/OUo gives 

Uo = NdkT/2  (62) 
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It might appear that the transformation L~--~ Lo is redundant, since one 
can obtain the thermodynamics from the partition function, 

Q = N o  I f e x p [ - f l N ( p ,  q)]  dp dq (63)  
3a l] space 

Actually, in the foregoing example, this integral is trivial if one makes the 
unphysical assumption, as we usually do in statistical mechanics, that the 
momentum or energy H is unbounded. If, however, H is bounded, which 
is physically logical, the integral can be quite tedious. We have 

Qo = No 1 J IC• exp(-fl�89 dp dq (64) 

where 

C = {p: �89 <- rU} 

which is hardly easy, even if M is independent of q. However, aside from 
the tediousness of the integration, the point is that the fundamental relation 
S = S( U, V, N)  is obtainable directly by the transformation L~-~Lo. 

Note that [in equations (63), (64)] Q > Qo, or 

Fo =- - k T  In Qo > - k T  In Q --- F (65) 

which shows that the fundamental constraint makes the system less stable 
thermodynamically than its unconstrained counterpart. 

5. SYSTEMS DEFINED BY FUNDAMENTAL CONSTRAINTS 

Suppose we have a system without a given Lagrangian, but for physical 
reasons it has, as a constant of motion, the fundamental constraint of  the 
form convex f~(p, q) -< y j , j  ~ J, q ~ D, which gives 

f (p ,  q) <- y; q ~ D (66) 

where f is the pointwise supremum of {fj} and hence a strictly convex 
function in p, with nonempty d o m f c  R". If we wish to compute the partition 
function Q, we must obtain the Hamiltonian. For this purpose, we define 

C=-{p: f (p ,q) -y<-O} ,  q ~ D  (67) 

which is a closed convex subset of the p space in which the fundamental 
constraint is satisfied. We shall consider only cases in which C is in fact 
bounded and so denotes the fundamental constraint also. 

The convex conjugate o f f ( p ,  q) is given as 

f*(v,  q) =-- sup{v ,p i - f (p ,  q), p e C, q ~ D} (68) 
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or, if f (p ,  q) is everywhere differentiable in p, its Legendre transform is 

f*(v,  q) = v~p,-f(p, q); v, ~ Of/Op, (69) 

Then the support function of C is 

h(v, q) = inf {[f*(av, q)+  3"]/a} (70) 
or:>0 

where v c K, the barrier cone of C. Since this is a well-defined function in 
v, we identify it with the Lagrangian Lo(v, q) of the system. Since it is 
homogeneous, Lo(v, q) furnishes the Hamiltonian Ho(p, q), which is the 
indicator function of C, 

Ho(p,q)=~(plC), q~D (71) 

The so-called partition function is now the volume G in phase space 
occupied by the system under the given fundamental constraint, 

G =  Nol Ia exp(-~Ho) dpdq=Nol I dpdq (72) 
11 s p a c e  C x D  

From this follows, as N-~ oo, the fundamental relation, 

S = S(% V, N) = k In G (73) 

where 3' is proportional to the expectation value of the attribute f(p, q), 
i.e., to the generalized internal energy. Note that in the int C the Poisson 
bracket o f f  and Ho vanishes. 

If  one insists on determining the partition function, one may, in the 
spirit of Dirac's treatment of primary constraints (Dirac, 1964), define 

so that 

H(p, q) = Ho(p, q)+f(p, q) (74) 

O = N o l  Ia exp(-/3H) = Nol  I exp(-~f) dpdq (75) 
11 s p a c e  C x D 

from which one obtains 

F(/3, V, N)-= - In  Q/fl (76) 

However, f(p, q) must denote some attribute as important as energy 
H(p, q), and therefore must be a constant of motion in order to justify 
equations (74)-(76). 

The correctness of this approach to the thermodynamics of this system 
stands, whether or not Lo or Ho(p, q) gives the dynamics of the system. 
The point is that Lo(v, q) is homogeneous, Ho = ~(plC), and, most impor- 
tant, our knowledge of C is sufficient to obtain the fundamental relation 
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and hence the thermodynamics of the system, if it exists, i.e., if  C is 
nonempty, convex, and bounded. If f ( p ,  q) happens to be H(p,  q), then 
our further analysis is the same as in Section 4.2. 

As a fifth example, as in Section (4.1), let 

O<-f(p, q)=-g~pipj < - y, y~R+ (77) 

so that 

C = - { p : f ( p , q ) - y < - O } ,  all q ~ D  (78) 

With vi = Of/Opt, the convex conjugate o f f - y  is 

f * (v ,  q) =Pi af  / op~- f (p ,  q) = go.via)j+ Y (79) 

Therefore, C has the homogeneous convex support function 

h(v, q )=  inf f * (av ,  q ) / a  (80) 
c~>0  

By setting d / d a [ f * ( a v ,  q ) /a ]  =0, we have 

h(v, q) = 2( ygov,vj) '/2 =- Lo( v, q) (81) 

with gijvivj >- O, as the Lagrangian, under the fundamental constraint [as in 
equation (42)], and 

Ho(p, q) = a(plC), q ~ D (82) 

It is the case that C is convex and bounded, and we obtain volume G [as 
in equation (47)] and hence the thermodynamics of the system. 

By equation (81), 3' has the same dimensions as g~v~vj and by equation 
(77) the same dimensions as f Since in mechanics a Lagrangian has the 
dimension of  energy and g~jv~vj also does, we see that y has the dimension 
of energy (the energy due to the degrees of freedom pertinent to the function 
f ) .  Consequently, we take y as proportional to the generalized internal 
energy U, the expectation value o f f ( p ,  q), of the system. We see also that 
one can thereby justify equation (74). We emphasize that f ( p ,  q) or U is 
not necessarily the total energy of the system, but the part specified by the 
n degrees of freedom under consideration. Of course, f may be implicitly 
specified by C as in section 4.1 or 4.2 or explicitly given as in this section. 

6. DYNAMICS AND QUANTUM SYSTEMS 

The transition to the quantum level is conceptually not different from 
the usual classical-to-quantum transition by the canonical quantization 
method, whereby q--> q and p ~ - i h  O/aq operators (Merzbacher, 1970) (or, 
if necessary, p->p and q ~  ih a/ap). 
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The analysis of the dynamics of the first two types (explicitly and 
implicitly homogeneous ones) has been discussed by Dirac (1964). Here 
we discuss only that of the third type, in which Ho(p, q) = 6(plc), with C 
defined through the fundamental constraint - ~  < f ( p, q ) - y  <_ O, q ~ D. In 
order to have any classical dynamics, it is necessary to define the Hamil- 
tonian 

or  

H ( p ,  q) = Ho(p, q ) + f ( p ,  q ) -  y 

I f ( p , q ) - %  p ~ C ,  q e D  
H ( p ,  q) = L ~176 otherwise (83) 

From this follows the equations of dynamics, 

v = d q / d t  = Of/Op =- p*; d p / d t  = -Of /Oq (84) 

where p* is defined as a subgradient 

H ( w ,  q ) - H ( p ,  q ) > - ( w - p [ p * ) ,  all w ~ "  (85) 

and the particles are confined to the region C x D in phase space. 
Similarly, for the quantum dynamics, we may define the operator 

a ( p ,  q )=- - f ( - ih  O/Oq, q) (86) 

acting on an m-dimensional Hilbert space H. Let the eigenvectors of A be 
{~bj}~', with respective eigenvalues {aj}. Then, 

( a - y)Oj( q) = ajOj( q) - y~bj(q) (87) 

and since A - 3 ,  -< 0, we have 

al <-a2 < -- " " . <--aw <- y (88) 

where W is the number of eigenvalues of A that are no greater than y, 
assuming A is self-adjoint. 

Again, whether or not the above-stated dynamics is necessary, our 
statistical problem at the quantum level has a simple solution. Let the Hilbert 
space H be defined by operator A (using its eigenvectors as a basis) and 
let H =- H w |  in which Hw is of dimension W, and Id is the identity of 
Hw. We have operator 

Ao = {0co onHw (89) 
on He 

and the commutator [A,/-]ro] = 0 on Hw. Obviously the eigenvalues o f /4o  
are zeros in Hw and 00 on HB. Therefore, the so-called partition function 

Q -- Trace[exp(-3/4o)]  = Tr Id = W (90) 
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which, as has been argued earlier with respect to G, is actually the number  
W of microstates contained in the macrostate specified by the fundamental  
constraint. Thus, by Boltzmann's prescription, assuming N ~ co, we obtain 
the fundamental  relation 

S =  S(3', V, N ) = k l n  W (91) 

where 3, is proport ional  to the generalized internal energy (A). The ther- 
modynamics  follows under  the fundamental  constraint. Note that we need 
A and hence f to specify the Hilbert space, and the f is given explicitly as 
in Section 5 or implicitly through C as in SeCtion 4. 

I f  one insists on determining the actual partition function, one must 
make the argument leading to equation (84) quite logical. Assuming this 
has been done, or in fact that f ( p ,  q) is the energy or Hamiltonian H(p ,  q), 
then, with e I < e 2-< �9 " �9 ----- ew =- 3" one obtains 

w 

Q = F, exp(-/3ej) (92) 
j = l  

where /-)49 = ejOj and obviously W and hence Q depend on V, N and 
3" =- rU, r 6 R+, U -= (/-)). Thus, 

- I n  Q / ~  --- F = F(/3, V, N)  

We envisage that it must be a difficult task to compute such Q in general, 
whereas computing G-= W requires counting those e's that are less than or 
equal to 3' and using combinatorics. 

Let us take as a sixth example an ideal gas of  N bosons in a cubic 
"box"  of side L, or A =- {q: 0 - q~ -< L}, and under  the fundamental  constraint 

The operator  

gives 

so that 

0 < f ( p ,  q) = a(PIP) ~ 3" ~ Ipl -< (3 ' /~)1/2  

A(p ,  q )=  - ~ ah2d2/dq2 
i=1 

d 2 
- a h  2-s-25_2 Cj( q) = ajO/( q), 

uqi 
O<-qi <_ L 

~Oj(q) = b: s in(piq/h);  pj = je rh /L  

Using the constraint, we have 

j_< ( L / , r h ) ( 3 ' / ~ )  1/2 = (L/,rh)(rU/oO'/2=_ J 

(93) 

(94) 

(95) 

(96) 
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That is, the number of microstates is W =  ( N + J ) ! / N I  J!;  and 

S = 3 k In W ~ 1 /kT  = 3 N~ (23. U ~/2) In (1 + A / U ~/2) 

where A = mqrh(a/r)X/2/L ", for high U, U = 3NkT/2.  
We also have, with C = {p: I p l -  < (y/a)l/2}, 

Lo(v,q)=(2ya)l/21v I, Ho=3(plC),  q ~ D  

and also 

H(p, q ) - -  ah2d2/dq~, 
1 

each of which has the eigenvalues 

q c D (97) 

ej = ( ot,a'2 h 2/ 4L2)j2; j = 1, 2 , . . . ,  ( 2L /~h ) ( y /a )  1/2=- J (98) 

Then, 

Q = Q~'; (99) 

One may compare the tasks involved in obtaining S from equation (96) 
and obtaining S or F from equation (99). 

J 
Q, = • exp(-~azr2h~j2/ L 2) 

j = l  

7. DISCUSSION 

Given a system that is a member of  a canonical ensemble, if its 
Lagrangian is homogeneous (of first degree), we obtain the volume G in 
phase space allowed the system, instead of the usual partition function Q. 
Analytically speaking, since every convex homogeneous function is the 
support function of some convex set defined by a convex function, it follows 
that a system with a homogeneous Lagrangian is a system obeying some 
constraint of  the type 

- ~ <  f(p,q)<- y, p ~ C ,  q ~ A  N 
(100) 

C=- {p: f (p ,  q) <- y= rU} 

called a fundamental constraint. I f f  is convex or C is convex and bounded,  
then computing G under this constraint provides the fundamental relation 
entropy S =  S(U, V, N ) =  k In G and hence the thermodynamics of  the 
system. Usually, f (p ,  q) is an attribute or a constant of motion (such as the 
Hamiltonian) of the system. 

A system may have an explicitly homogeneous Lagrangian (as in 
relativistic systems), an implicitly homogeneous Lagrangian (in an attempt 
to avoid a privileged observer), or an imposed homogeneous Lagrangian, 
imposed by physical considerations. For each case, one winds up with a 
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fundamental  constraint, whether or not the necessary convex function 
f(p, q) is explicitly or implicitly given. The fundamental  constraint is in 
general a recognition of  the fact that the momenta  are not a set of  indepen- 
dent variables, or that their domain is nonempty  and bounded,  whereas 
those of  the velocities are unbounded.  

At the quantum level, it is also a well-defined program to determine 
the number  W of microstates that are consistent with the macrostate 
specified by the fundamental  constraint. Here, it is assumed that f(p, q) 
has been turned into an operator  A(p, q) on a suitable Hilbert space, and 
that the operator  A has suitable properties such as self-adjointness. 

Finally, if a system with homogeneous Lagrangian has no proper  
fundamental  constraint [f(p, q) is proper  if it is strictly convex and d o m f  
or C is nonempty,  convex, and bounded],  then the system has no thermody- 
namics. That is, it is not in a the rma l  equilibrium with any heat reservoir. 
Of  course, in some cases, one does not know f(p, q); but if convex C is 
known, its boundedness or lack of it is sufficient to determine if the system 
has some thermodynamics.  

Our conclusions are as follows: 
(i) Given an intrinsically homogeneous Lagrangian Lo(v, q), we deter- 

mine not the partition function Q, but the volume in phase space 

G=(N!hNU)-~ fc x D  dpdq 

after determining the appropriate  fundamental  constraint signified by the 
closed, bounded,  convex set C if there is one. The fundamental  relation 
S = k In G and the thermodynamics  of  the system are obtained thereby, 
and this is the answer to our second question. 

(ii) Given convex L, we transform L to homogeneous L0 and determine 
G and hence the fundamental  relation S = S( U, V, N) ,  as in (i). This answers 
our first question. 

(iii) Given no L or H, but convex f(p, q), some constant of  motion, 
as the fundamental  constraint explicitly expressed or implicitly expressed 
in terms of bounded convex C, we determine G and S as in (i). And this 
is the answer to our third question. 

The program in (ii) may be unnecessary, but it could bear some 
remarkable results, especially if momenta  are bounded. In (i) we have the 
only directly plausible method,  and in (iii) the only feasible program. 

Finally, we remark that in the thermodynamic limit the value of r in 
equation (100) is inconsequential (Shannon, 1948; Jaynes, 1965), and we 
may set it equal to 1. That is, according to Jaynes (1965), in the limit N--> ~ ,  
our foregoing results are independent of  whatever is considered to be the 
phase space (or microstates) of  "reasonable probabili ty." 
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